Эндоплазматическая сеть ретикулум

Эндоплазматическая сеть ретикулум

Эндоплазматический ретикулум ( ER ) представляет собой тип органелл из двух субъединиц — шероховатая эндоплазматическая сеть ( RER ) и гладкие эндоплазматическая сеть ( ГЭЭ ). Эндоплазматический ретикулум встречается в большинстве эукариотических клеток и образует взаимосвязанную сеть уплощенных мембранных мешочков, известных как цистерны (в RER) и трубчатых структур в SER. Мембраны ER непрерывны с внешней ядерной мембраной . Эндоплазматический ретикулум не обнаруживается ни в эритроцитах , ни в сперматозоидах .

Эти два типа ER имеют много одинаковых белков и участвуют в определенных общих действиях, таких как синтез определенных липидов и холестерина . Различные типы клеток содержат разные соотношения двух типов ER в зависимости от активности клетки.

Наружная ( цитозольная ) поверхность грубого эндоплазматического ретикулума усеяна рибосомами, которые являются участками синтеза белка . Грубый эндоплазматический ретикулум особенно заметен в таких клетках, как гепатоциты . В гладком эндоплазматическом ретикулуме отсутствуют рибосомы и отсутствуют функции синтеза липидов, но не метаболизма , производства стероидных гормонов и детоксикации . Гладкая эндоплазматическая сеть особенно широко распространена в клетках печени и гонад млекопитающих .

Содержание

  • 1 История
  • 2 Структура
    • 2.1 Грубый эндоплазматический ретикулум
    • 2.2 Гладкая эндоплазматическая сеть
      • 2.2.1 Саркоплазматический ретикулум
  • 3 функции
    • 3.1 Транспорт белка
    • 3.2 Биоэнергетическая регуляция поставки ER ATP с помощью механизма CaATiER
  • 4 Клиническое значение
  • 5 ссылки
  • 6 Внешние ссылки

История

ER наблюдался с помощью светового микроскопа Гарнье в 1897 году, который ввел термин эргастоплазма . С помощью электронной микроскопии кружевные мембраны эндоплазматического ретикулума были впервые обнаружены в 1969 году Кейт Р. Портер , Альберт Клод и Эрнест Ф. Фуллам. Позже слово reticulum , что означает «сеть», было использовано Портером в 1953 году для описания этой мембранной ткани.

Структура

Общая структура эндоплазматической сети представляет собой сеть мембран, называемых цистернами . Эти похожие на мешочки структуры удерживаются вместе цитоскелетом . Фосфолипид мембрана окружает полостное пространство (или полость), которая является непрерывной с перинуклеарным пространством , но отдельно от цитозола . Функции эндоплазматического ретикулума можно кратко охарактеризовать как синтез и экспорт белков и мембранных липидов, но они варьируются в зависимости от ER, типа клетки и функции клетки. Количество как грубого, так и гладкого эндоплазматического ретикулума в клетке может медленно меняться от одного типа к другому, в зависимости от меняющейся метаболической активности клетки. Трансформация может включать внедрение новых белков в мембрану, а также структурные изменения. Изменения содержания белка могут происходить без заметных структурных изменений.

Шероховатой эндоплазматической сети

Поверхность грубого эндоплазматического ретикулума (часто сокращенно RER или грубого ER ; также называемого гранулярным эндоплазматическим ретикулумом ) усеяна рибосомами, производящими белок, что придает ему «грубый» вид (отсюда и название). Сайт связывания рибосомы на шероховатом эндоплазматическом ретикулуме — это транслокон . Однако рибосомы не являются стабильной частью структуры этой органеллы, поскольку они постоянно связываются и высвобождаются из мембраны. Рибосома связывается с RER только после того, как в цитозоле образуется специфический комплекс белок-нуклеиновая кислота. Это специальные сложные формы , когда свободная рибосома начинает переводить на мРНК белка , предназначенный для секреторного пути . Первые 5–30 полимеризованных аминокислот кодируют сигнальный пептид , молекулярное сообщение, которое распознается и связывается частицей распознавания сигнала (SRP). Паузы перевода и рибосома комплекса связывается с RER транслоконом , где перевод продолжается с зарождающимися (новыми) белками , образуя в просвет RER и / или мембрану. Белок обрабатывается в просвете ЭР ферментом (сигнальной пептидазой ), который удаляет сигнальный пептид. На этом этапе рибосомы могут быть выпущены обратно в цитозоль; однако известно, что нетранслирующие рибосомы остаются связанными с транслоконами.

Мембрана грубого эндоплазматического ретикулума образует большие двухмембранные листы, которые расположены рядом с внешним слоем ядерной оболочки и продолжаются с ним . Листы с двойной мембраной уложены друг на друга и соединены несколькими правосторонними или левосторонними спиральными пандусами, «пандусами Терасаки», в результате чего образуется структура, напоминающая многоэтажную автостоянку . Хотя между эндоплазматическим ретикулумом и аппаратом Гольджи нет непрерывной мембраны , мембранные транспортные везикулы перемещают белки между этими двумя компартментами. Везикулы окружены белками оболочки, называемыми COPI и COPII. COPII нацеливает пузырьки на аппарат Гольджи, а COPI отмечает их возвращение в грубый эндоплазматический ретикулум. Шероховатая эндоплазматическая сеть работает согласованно с комплексом Гольджи , чтобы предназначаться новые белки в их соответствующих направления. Второй метод транспорта из эндоплазматического ретикулума включает области, называемые участками контакта с мембраной , где мембраны эндоплазматического ретикулума и других органелл плотно прилегают друг к другу, обеспечивая перенос липидов и других небольших молекул.

Грубая эндоплазматическая сеть играет ключевую роль в выполнении нескольких функций:

  • Производство лизосомальных ферментов с добавлением маннозо-6-фосфатного маркера в цис- сеть Гольджи.
  • Производство секретируемых белков, секретируемых либо конститутивно без метки, либо секретируемых регуляторным образом с участием клатрина и парных основных аминокислот в сигнальном пептиде .
  • Интегральные мембранные белки, которые остаются встроенными в мембрану, когда везикулы выходят и связываются с новыми мембранами. Rab- белки играют ключевую роль в нацеливании на мембрану; Белки SNAP и SNARE являются ключевыми в событии слияния.
  • Начальное гликозилирование по мере сборки продолжается. Это N-сцепление (O-связывание происходит в Golgi).
    • N-связанное гликозилирование: если белок правильно уложен, олигосахарилтрансфераза распознает последовательность AA N X S или N X T (с фосфорилированным остатком S / T) и добавляет основную цепь из 14 сахаров (2- N- ацетилглюкозамин, 9-разветвление). манноза и 3- глюкоза в конце) к азоту боковой цепи Asn.

Гладкая эндоплазматическая сеть

В большинстве клеток гладкий эндоплазматический ретикулум (сокращенно SER ) недостаточен. Вместо этого есть области, где ER частично гладкий и частично шероховатый, эта область называется переходной ER. Переходная ER получила свое название, потому что она содержит сайты выхода ER. Это области, где транспортные везикулы, содержащие липиды и белки, созданные в ER, отделяются от ER и начинают двигаться к аппарату Гольджи . Специализированные клетки могут иметь много гладкой эндоплазматической сети, и в этих клетках гладкая ЭПР выполняет множество функций. Он синтезирует липиды , фосфолипиды и стероиды . Клетки, которые секретируют эти продукты, такие как клетки яичек , яичников и сальных желез, имеют множество гладких эндоплазматических ретикулумов. Он также осуществляет метаболизм углеводов, детоксикацию продуктов естественного метаболизма, алкоголя и наркотиков, прикрепление рецепторов к белкам клеточной мембраны и метаболизм стероидов . В мышечных клетках он регулирует концентрацию ионов кальция . Гладкая эндоплазматическая сеть встречается в различных типах клеток (как животных, так и растений) и в каждом из них выполняет разные функции. Гладкий эндоплазматический ретикулум также содержит фермент глюкозо-6-фосфатазу , который превращает глюкозо-6-фосфат в глюкозу, что является этапом глюконеогенеза . Он соединен с ядерной оболочкой и состоит из канальцев, расположенных вблизи периферии клетки. Эти трубки иногда разветвляются, образуя сетчатую сеть. В некоторых клетках есть расширенные области, такие как мешочки грубого эндоплазматического ретикулума. Сеть гладкого эндоплазматического ретикулума позволяет увеличить площадь поверхности для действия или хранения ключевых ферментов и продуктов этих ферментов.

Читайте также:  Инфильтрат после укола лечение

Саркоплазматический ретикулум

Саркоплазматический ретикулум (SR), от греческого σάρξ sarx («плоть»), представляет собой гладкий ER, обнаруженный в миоцитах . Единственное структурное различие между этой органеллой и гладкой эндоплазматической сетью — это смесь белков, которые они имеют, оба связаны с их мембранами и дрейфуют в пределах их просветов. Это фундаментальное различие указывает на их функции: эндоплазматический ретикулум синтезирует молекулы, а саркоплазматический ретикулум накапливает ионы кальция и перекачивает их в саркоплазму при стимуляции мышечных волокон. После выхода из саркоплазматической сети ионы кальция взаимодействуют с сократительными белками, которые используют АТФ для сокращения мышечного волокна. Саркоплазматический ретикулум играет главную роль в взаимодействии возбуждения и сокращения .

Функции

Эндоплазматический ретикулум выполняет множество общих функций, включая складывание белковых молекул в мешочки, называемые цистернами, и транспорт синтезированных белков в везикулах в аппарат Гольджи . Правильная укладка вновь созданных белков становится возможной благодаря нескольким шаперонным белкам эндоплазматического ретикулума , включая протеин-дисульфидизомеразу (PDI), ERp29, член семейства Hsp70 BiP / Grp78 , калнексин , кальретикулин и семейство пептидилпропилизомераз. Только правильно свернутые белки транспортируются из грубого ER в аппарат Гольджи — развернутые белки вызывают ответ развернутого белка как стрессовую реакцию в ER. Нарушения в окислительно-восстановительной регуляции, регуляции кальция, депривации глюкозы и вирусной инфекции или сверхэкспрессии белков могут привести к стрессовой реакции эндоплазматического ретикулума (стресс ER), состоянию, при котором сворачивание белков замедляется, что приводит к увеличению количества развернутых белков. . Этот стресс становится потенциальной причиной повреждения при гипоксии / ишемии, инсулинорезистентности и других расстройствах.

Транспорт белка

Секреторные белки, в основном гликопротеины , перемещаются через мембрану эндоплазматического ретикулума. Белки, которые транспортируются эндоплазматическим ретикулумом по клетке, помечаются адресной меткой, называемой сигнальной последовательностью . N-конец (один конец) полипептидной цепи (т. Е. Белка) содержит несколько аминокислот, которые работают как адресные метки, которые удаляются, когда полипептид достигает места назначения. Растущие пептиды достигают ER через транслокон , мультипротеиновый комплекс, заключенный в мембрану. Белки, предназначенные для мест за пределами эндоплазматического ретикулума, упаковываются в транспортные пузырьки и перемещаются по цитоскелету к месту назначения. В фибробластах человека ER всегда совместно распределяется с микротрубочками, и деполимеризация последних вызывает его коагрегацию с митохондриями, которые также связаны с ER.

Эндоплазматический ретикулум также является частью пути сортировки белков. По сути, это транспортная система эукариотической клетки. Большинство его резидентных белков удерживается внутри него за счет удерживающего мотива . Этот мотив состоит из четырех аминокислот в конце белковой последовательности. Наиболее распространенными удерживающими последовательностями являются KDEL для белков, расположенных в просвете, и KKXX для трансмембранного белка. Однако вариации KDEL и KKXX действительно встречаются, и другие последовательности также могут вызывать удержание эндоплазматического ретикулума. Неизвестно, может ли такое изменение привести к локализации суб-ER. В клетках млекопитающих имеется три рецептора KDEL ( 1 , 2 и 3 ), и они имеют очень высокую степень идентичности последовательностей. Функциональные различия между этими рецепторами еще предстоит установить.

Биоэнергетическая регуляция поставки ER ATP с помощью механизма CaATiER

Эндоплазматический ретикулум не имеет механизма регенерации АТФ и, следовательно, требует импорта АТФ из митохондрий. Импортируемый АТФ жизненно важен для ЭР, чтобы выполнять свои клеточные функции, такие как сворачивание и транспортировка белков.

Транспортер АТФ в ER, SLC35B1 / AXER, был недавно клонирован и охарактеризован, и митохондрии поставляют АТФ в ER через Ca 2+ -антагонизированный транспорт в механизм ER ( CaATiER ). Механизм CaATiER демонстрирует чувствительность к цитозольному Ca 2+ в диапазоне от высоких нМ до низких мкМ, при этом Ca 2+ -чувствительный элемент еще предстоит идентифицировать и проверить.

Клиническое значение

Нарушения XBP1 приводят к усилению стрессовой реакции эндоплазматического ретикулума и, следовательно, вызывают более высокую восприимчивость к воспалительным процессам, которые могут даже способствовать развитию болезни Альцгеймера . В толстой кишке аномалии XBP1 связаны с воспалительными заболеваниями кишечника, включая болезнь Крона .

Развернутом ответ белок (УПО) представляет собой клеточный ответ стресс , связанные с эндоплазматической сети. UPR активируется в ответ на накопление развернутых или неправильно свернутых белков в просвете эндоплазматического ретикулума. UPR восстанавливает нормальную функцию клетки, останавливая трансляцию белков , разрушая неправильно свернутые белки и активируя сигнальные пути, которые приводят к увеличению продукции молекулярных шаперонов, участвующих в укладке белков . Устойчивая сверхактивация UPR связана с прионными заболеваниями, а также с некоторыми другими нейродегенеративными заболеваниями, и ингибирование UPR может стать лечением этих заболеваний.

Строение эндоплазматической сети

Эндоплазматическая сеть (ЭПС, эндоплазматический ретикулум) – сложная ультрамикроскопическая, очень разветвлённая, взаимосвязанная система мембран, которая более или менее равномерно пронизывает массу цитоплазмы всех эукариотических клеток.

ЭПС – мембранная органелла, состоящая из плоских мембранных мешочков – цистерн, каналов и трубочек. Благодаря такому строению эндоплазматическая сеть значительно увеличивает площадь внутренней поверхности клетки и делит клетку на секции. Внутри она заполнена матриксом (умеренно плотный рыхлый материал (продукт синтеза)). Содержание различных химических веществ в секциях неодинаково, потому в клетке как одновременно, так и в определённой последовательности могут происходить различные химические реакции в незначительном объёме клетки. Эндоплазматическая сеть открывается в перинуклеарное пространство (полость между двумя мембранами кариолемы).

Читайте также:  Болиголов от грибка ногтей как применять

Мембрана эндоплазматической сети состоит из белков и липидов (в основном фосфолипидов), а так же ферментов: аденозинтрифосфатазы и ферментов синтеза мембранных липидов.

Готовые работы на аналогичную тему

  • Курсовая работа Эндоплазматическая сеть 480 руб.
  • Реферат Эндоплазматическая сеть 270 руб.
  • Контрольная работа Эндоплазматическая сеть 190 руб.

Различают два вида эндоплазматической сети:

  • Гладкую (агранулярную, аЭС), представленную трубочками, которые анастамозируют между собой и не имеют на поверхности рибосом;
  • Шероховатую (гранулярную, грЭС), состоящую так же из соединённых между собой цистерн, но они покрыты рибосомами.

Иногда выделяют ещё переходящую, или транзиторную (тЭС) эндоплазматическую сеть, которая находится в участке перехода одной разновидности ЭС в другую.

Гранулярная ЭС свойственна всем клеткам (кроме сперматозоидов), но степень её развития разная и зависит от специализации клетки.

Сильно развита грЭС эпителиальных железистых клеток (поджелудочной железы, вырабатывающих пищеварительные ферменты, печени – синтезирующих альбумины сыворотки крови), фибробластов (клеток соединительной ткани, продуцирующих белок коллаген), плазматических клеток (продуцирование иммуноглобулинов).

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Агранулярная ЭС преобладает в клетках надпочечников (синтез стероидных гормонов), в клетках мышц (обмен кальция), в клетках фундальных желез желудка (выделение ионов хлора).

Другим видом мембран ЭПС являются разветвлённые мембранные трубочки, содержащие внутри большое количество специфических ферментов, и везикулы – маленькие, окружённые мембраной пузырьки, в основном находящиеся рядом с трубочками и цистернами. Они обеспечивают перенесение тех веществ, которые синтезируются.

Функции ЭПС

Эндоплазматическая сеть – это аппарат синтеза и, частично, транспорта веществ цитоплазмы, благодаря которому клетка выполняет сложные функции.

Функции обоих типов ЭПС связаны с синтезом и транспортом веществ. Эндоплазматическая сеть является универсальной транспортной системой.

Гладкая и шероховатая эндоплазматические сети своими мембранами и содержимым (матриксом) выполняют общие функции:

  • разделительную (структурирующую), благодаря чему цитоплазма упорядоченно распределяется и не смешивается, а так же предотвращает попадание в органеллу случайных веществ;
  • трансмембранное транспорт, благодаря которому осуществляется перенесение сквозь стенку мембраны необходимых веществ;
  • синтез липидов мембраны с участием ферментов, содержащихся в самой мембране и обеспечивающих репродукцию эндоплазматической сети;
  • благодаря разнице потенциалов, возникающая между двумя поверхностями мембран ЭС возможно обеспечение проведения импульсов возбуждения.

Кроме того, каждой из разновидностей сети свойственны свои специфические функции.

Функции гладкой (агранулярной) эндоплазматической сети

Агранулярная эндоплазматическая сеть, кроме названных функций, общих для обоих видов ЭС, выполняет ещё и свойственные только для неё функции:

  • депо кальция. Во многих клетках (в скелетных мышцах, в сердце, яйцеклетках, нейронах) существуют механизмы, способные изменять концентрацию ионов кальция. Поперечнополосатая мышечная ткань содержит специализированную эндоплазматическую сеть, называемую саркоплазматическим ретикулумом. Это резервуар кальций-ионов, а мембраны этой сети содержат мощные кальциевые помпы, способные выбрасывать в цитоплазму большое количество кальция или транспортировать его в полости каналов сети за сотые доли секунды;
  • синтез липидов, веществ типа холестерина и стероидных гормонов. Стероидные гормоны синтезируются в основном в эндокринных клетках половых желез и надпочечников, в клетках почек и печени. Клетки кишечника синтезируют липиды, которые выводятся в лимфу, а потом в кровь;

детоксикационная функция – обезвреживание єкзогенных и эндогенных токсинов;

В почечных клетках (гепатоцитах) содержатся ферменты оксидазы, способные разрушать фенобарбитал.

ферменты органеллы берут участие в синтезе гликогена (в клетках печени).

Функции шероховатой (гранулярной) эндоплазматической сети

Для гранулярной эндоплазматической сети, кроме перечисленных общих функций, свойственны ещё и специальные:

  • синтез белков на грЭС имеет некоторые особенности. Начинается он на свободных полисомах, которые в дальнейшем связываются с мебранами ЭС.
  • Гранулярная эндоплазматическая сеть синтезирует: все белки клеточной мембраны (кроме некоторых гидрофобных белков, белков внутренних мембран митохондрий и хлоропластов), специфические белки внутренней фазы мембранных органелл, а так же секреторные белки, которые транспортируются по клетке и поступают во внеклеточное пространство.
  • пострансляционная модификация белков: гидроксилирование, сульфатирование, фосфориллирование. Важным процессом является гликозилирование, которое происходит под действием связанного с мембраной фермента гликозилтранферазы. Гликозилирование происходит перед секрецией или транспортом веществ к некоторым участкам клетки ( комплексу Гольджи, лизосомам или плазмолемме).
  • транспорт веществ по внутримембранной части сети. Синтезированные белки по промежуткам ЭС перемещаются к комплексу Гольджи, который выводит вещества из клетки.
  • благодаря участию гранулярной эндоплазматической сети образуется комплекс Гольджи.

Функции зернистой эндоплазматической сети связаны с транспортом белков, которые синтезируются в рибосомах и расположены на её поверхности. Синтезированные белки поступают внутрь ЭПС, скручиваются и приобретают третичную структуру.

Белок, который транспортируется к цистернам, значительно изменяется на своём пути. Он может, например, фосфорилироваться или превращаться в гликопротеид. Обычный путь для белка – это путь через зернистую ЭПС в аппарат Гольджи, откуда он или выходит наружу клетки, или поступает к другим органеллам той же клетки, например, к лизосомам), или откладывается в виде запасных гранул.

В клетках печени как зернистая, так и незернистая эндоплазматическая сетка берут участие в процессах детоксикации ядовитых веществ, которые потом выводятся из клетки.

Как и внешняя плазматическая мембрана, эндоплазматическая сетка имеет избирательную проницаемость, вследствие чего концентрация веществ внутри и снаружи каналов сетки неодинакова. Это имеет значение для функции клетки.

В эндоплазматической сетке мышечных клеток больше ионов кальция, чем в её цитоплазме. Выходя из каналов эндоплазматической сетки, ионы кальция запускают процесс сокращения мышечных волокон.

Образование эндоплазматической сети

Липидные компоненты мембран эндоплазматической сети синтезируются ферментами самой сети, белковый – поступает из рибосом, расположенных на её мембранах. В гладкой (агранулярной) эндоплазматической сети нет собственных факторов синтеза белка, потому считается, что эта органелла образуется в результате потери рибосом гранулярной эндоплазматической сетью.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Эндоплазматический ретикулум (ЭПР, от лат. Reticulum — «сеточка») или эндоплазматическая сеть — внутриклеточная органеллы эукариотических клеток, представляет собой разветвленную систему из окруженных мембраной сплющенных полостей, пузырьков и канальцев.

История открытия

Впервые эндоплазматический ретикулум был обнаружен канадскими учеными Китом Портером, Альбертом Клодом и Эрнстом Фулламом в 1945 году с помощью электронной микроскопии.

Строение

Эндоплазматический ретикулум состоит из разветвленной сети трубочек и карманов, окруженных мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.

Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранного полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации. Пузырьки и канальцы, создают эндоплазматический ретикулум, имеют в поперечнике 0,05-0,1 микрона (иногда до 0,3 микрона), толщина двухслойных мембран, стенку канальцев, составляет около 50 ангстрем. Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки. Тончайшие трубочки, диаметр которых колеблется в пределах 1000-3000 ангстрем, заполненные гомогенным содержимым и соединяют большие по размеру части эндоплазматического ретикулума. Подобно компонентов цитоскелета мембраны полярные: с одного конца они наращиваются, а с другой распадаются на отдельные фрагменты. Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям. Выделяют два типа ЭПР:

  • Шершавый (гранулярный) эндоплазматический ретикулум,
  • Гладкий (агранулярный) эндоплазматический ретикулум.

На поверхности шероховатого эндоплазматического ретикулума находится большое количество рибосом, которые отсутствуют на поверхности гладкого ЭПР.

Шершавый и гладкий эндоплазматический ретикулум выполняют некоторые различные функции в клетке.

Функции эндоплазматического ретикулума

При участии эндоплазматического ретикулума происходит трансляция и транспорт мембранных белков, сектеруються, синтез и транспорт липидов и стероидов. Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция, который является медиатором многих реакций ответы клетки, в частности сокращение мышечных клеток. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума — саркоплазматическая ретикулум.

Функции гладкого эндоплазматического ретикулума

Гладкий эндоплазматический ретикулум участвует во многих процессах метаболизма. Ферменты гладкого эндоплазматического ретикулума участвуют в синтезе липидов и фосфолипидов, жирных кислот и стероидов. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, обеззараживании клетки и запасании кальция. В частности, в связи с этим в клетках надпочечников и печени преобладает гладкой эндоплазматический ретикулум.

Синтез гормонов

К гормонам, которые образуются в гладком ЭПС, относятся, например, половые гормоны позвоночных животных и стероидные гормоны (синтезируемых в надпочечниках). Клетки яичек и яичников, отвечающих за синтез гормонов, содержат большое количество гладкого ЭПР.

Накопление и преобразование углеводов

Углеводы в организме накапливаются в печени в виде гликогена. С помощью гликолиза гликоген в печени трансформируется в глюкозу, которая является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов гладкого ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогрупу, позволяя, таким образом, глюкозе оставить клетку и повысить уровень сахара в крови.

Нейтрализация ядов

Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации токсинов. Ферменты гладкого ЭПР присоединяют к нерастворимых радикалов гидрофильные последовательности, в результате чего токсин становится лучше растворимым и может выводиться из клетки, а затем и из организма через мочу. В случае непрерывного поступления ядов, медикаментов или алкоголя, площадь гладкого ЭПР увеличивается, что позволяет нейтрализовать большее количество токсина за счет увеличения рабочей поверхности ЭПР.

Саркоплазматическому ретикулум

Особая форма гладкого эндоплазматического ретикулума, саркоплазматическая ретикулум, образуется в мышечных клетках, где ионы кальция активно закачиваются из цитоплазмы в полости ЭПР против градиента концентрации в невозбужденном состоянии клетки и освобождаются в цитоплазму для инициации сокращения. Концентрация ионов кальция в ЭПС может достигать 10 -3 моль / л, тогда как в цитоплазме — порядка 10 -7 моль / л (в состоянии покоя). Таким образом, мембрана саркоплазматического ретикулума обеспечивает активный перенос против градиентов концентрации больших порядков. И прием и увольнение ионов кальция в ЭПС находится в жесткой зависимости от физиологических условий. 2

Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как включение и ингибирование ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток имунной системы.

Функции гранулярного эндоплазматического ретикулума

Гранулярий эндоплазматический ретикулум имеет две функции: синтез белков и производство мембран.

Синтез белков

Белки, вырабатываемые клеткой, синтезируются в рибосомах, которые могут быть присоединены к поверхности ЭПС, именно это и придает поверхности «шершавый», гранулярный вид. На поверхности ЭПР синтезируется много белков, предназначенных для сортировки и транслокации в определенных отделов клетки, то есть интегральные мембранные белки, белки органелл и белки, предназначенные для секреции. Однако, рибосомы на поверхности ЭПР на всегда находятся там, а присоединяются к нему после начала синтеза белка, предназначенного для сортировки в ЭПР. Свободная рибосома синтезирует белок, пока цитозольные частицы распознавания сигнала на узнают сигнал с 5-15 гидрофобных аминокислот (N-сигнальная последовательность) после положительно зярядженои аминокислоты в начале цепочки. Этот сигнальный фрагмент остается в мембране до конца синтеза, после чего он отрезается от готового белка.

Полученные полипептидной цепи помещаются в полости гранулярного эндоплазматического ретикулума, где впоследствии подвергаются первым шагам посттрансляционной модификации и сворачиваются. Таким образом, линейные цепи аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трехмерную структуру.

Синтез мембран

С помощью производства фосфолипидов, ЭПР расширяет поверхность своих собственных мембран, с помощью транспортных везикул транспортируются в другие части мембранной системы.

Видео по теме

Ссылка на основную публикацию
Эндокринное ожирение лечение
Несмотря на то что распределение жировой ткани в организме генетически предопределено, основной причиной развития ожирения является переедание, а с научной...
Эмбриональная грыжа у плода
Грыжевое выпячивание Задержка роста плода Затрудненное дыхание Увеличение языка Омфалоцеле (пуповинная или эмбриональная грыжа, грыжа пупочного канатика) — врожденная патология,...
Эмг это в медицине
, MD, College of Medicine, University of Saskatchewan В случаях, когда причину мышечной слабости (поражение нерва, мышцы или синапса) трудно...
Эндокринолог жалобы
Существует взаимосвязь в работе всех желез внутренней секреции, и при нарушении функции хотя бы одного эндокринного органа страдают многие другие....
Adblock detector